A Blockchain-Based Framework for Secure Digital
Asset Management.

Vu Tuan Truong and Long Bao Le

Abstract—In the current age of digital world with the emer-
gence of metaverse, digital assets are increasingly recognized
and become more and more valuable. Unlike real-world assets,
managing digital contents is more challenging since their as-
sociated information might be leaked widely on the Internet,
making them worthless. Traditional digital asset management
(DAM) systems based on third-party authorities and centralized
databases have various weaknesses, threatening the benefits of
stakeholders. In this paper, we propose a blockchain-based
DAM framework utilizing smart contract, InterPlanetary File
System (IPFS), and multi-layer encryption mechanisms for access
control of digital assets in the metaverse. Our proposed design
eliminates the intervention of intermediaries and offers a wide
range of advanced security features such as resistance against
data leakage and data alteration without trust assumptions
among participants. Besides, key features of blockchain are
leveraged to provide the system with immutability, traceability
and transparency of information. To prove the feasibility of our
design, we build a Decentralized Application (DApp) operating
as a marketplace for digital assets using the proposed DAM
framework. Experimental results indicate that the framework
is more cost-effective than existing platforms, while advanced
security features are integrated and automation is maximized.

Index Terms—Blockchain, Digital Asset Management, Meta-
verse, InterPlanetary File System, Decentralized Application.

I. INTRODUCTION
A. Background

With the rapid development of digital platforms such as
social networking, e-commerce, and especially the metaverse,
creation of digital assets like photos, videos, music or meta-
verse items is no more limited to professionals and experts.
However, digital content may lose its value overtime due
to its availability and accessibility in the digital space. If a
digital asset can be accessed widely and uncontrollably on the
Internet, the demand for it would decrease rapidly, causing it
worthless and leading to huge monetary loss for the creators.

Various solutions have been proposed to protect digital
assets from illegal access, ownership, and copyright issues [|1]].
For example, Non-fungible Token (NFT) based on blockchain
technology has emerged as an effective mechanism to secure
the ownership of digital assets [2]. A digital asset can be
tokenized as NFT and stored on blockchain so that one can
prove the unique ownership of the asset even when the source
data of the asset can be accessed by the others. However, NFT
is only suitable for certain types of digital assets whose value
mostly depends on their uniqueness. On the other hand, access-
based digital assets should be distributed to multiple customers

T. V. Truong and L. B. Le are with INRS-EMT, University of
Québec, Montréal, QC H5A 1K6, Canada (email: tuan.vu.truong@inrs.ca,
long.le@inrs.ca).

so that creators can take advantages of selling the content
license. In this case, uniqueness is not an important factor
since these digital contents can be owned by multiple peo-
ple. These access-based digital assets are usually distributed
through third-party authorities in traditional platforms, where
the source files are stored in a centralized Distribution channel
and license is provided through a License broker [3]]. However,
a substantial portion of profits must be shared with these
intermediaries. If they act dishonestly such as leaking data
to the public or not providing license after the license fee
has been paid, the benefits of participants might be threatened
severely. Moreover, their associated data could be leaked or
altered by attackers when it is stored in centralized databases
or during its transmission among different entries.

In this paper, we propose a secure Digital Asset Man-
agement (DAM) framework utilizing smart contract, Inter-
Planetary File Syste (IPFS) and multi-layer encryption
mechanisms to overcome all the mentioned issues. Our design
eliminates the role of third parties so that all decisions are
made by smart contracts to ensure the fairness for all involved
stakeholders. With multi-layer encryption methods, the frame-
work can resist data leakage even if attackers can eavesdrop all
information on the transmission. Our framework also provides
atomic transaction, which means that a transaction associated
with the purchase of digital assets will be either successful
or canceled (if the data are altered by attackers). No trust
assumption among participants is required in our design,
while all trading information is public and transparent on the
blockchain.

B. Related Works and Motivations

Prior to our work, there have been several studies inves-
tigating the applications of blockchain technology for DAM
system. The authors in [4] proposed a proof of delivery
(PoD) scheme for digital assets using smart contracts. In that
platform, a smart contract is deployed to be the intermediary
between the asset owner and customers. When a customer is
not satisfied or cannot download the files, he can report it to
a third-party arbitrator. There could be a problem when the
arbitrator intentionally makes wrong decision, or gets hacked,
or simply is not online. Another blockchain-based digital rights
management system is introduced in [5] to protect digital con-
tent. However, source files are stored in centralized cloud so
it could be lost or altered by attackers. Furthermore, although
it allows customers to report mismatched data, the design
does not take into account the situation in which customers

Uhttps://docs.ipfs.tech/

intentionally claim that they obtained invalid content for a
refund, while they have actually received the correct source
files. There have been also several frameworks combining
blockchain and Attribute-based Acess Control (ABAC) to
control data access [6]-[8]. However, none of them provide
possible solutions for data leakage and data alteration. This
work aims to fill these gaps in the existing literature.

The rest of this paper is organized as follows. In Section
[the DAM framework is proposed with a complete Decen-
tralized Application (DApp) operating on top of the Ethereum
blockchain as a marketplace. Section [[II] provides analyses on
performance and security features of the design. Finally, the
paper is concluded with Section

II. PROPOSED DAM FRAMEWORK

In this section, we describe our smart contract-based so-
Iution in digital asset management. The overall architecture
is presented with a complete workflow for different scenarios.
We also provide a marketplace DApp to realize our framework
with full functions which are described in the architecture.

A. Preliminary

Our framework utilizes smart contract, IFPS, Elliptic Curve
Digital Signature Algorithnf’](ECDSA) and AES-25¢encryp-
tion to resist a wide range of attack scenarios.

1) Blockchain and Smart Contract: Blockchain technology
is a chain of blocks linked together, where each block contains
a certain amount of data in a decentralized manner. If those
data are financial transactions such as sending tokens from
one user to another node, the blockchain can be considered
as a distributed ledger. Moreover, it can also store programs
that run when predetermined conditions are met, which are
called smart contracts. Smart contracts are usually used to
automate the decision making process, thereby getting rid of
intermediary’s involvement. In our framework, smart contracts
are deployed on the Ethereum blockchai

2) IPFS: 1PFS is a peer-to-peer network for storing and
sharing datd'] It is a decentralized environment where each
file is divided into smaller chunks of data, and then stored by
different nodes. Each file is identified by its hash, which is
called Content Identifier (CID). When a user wants to down-
load a file from IPFS, he must ask other nodes for all necessary
chunks based on the file’s CID. With this mechanism, IPFS
ensures that all the files cannot be altered, since it will lead to
the modification of the corresponding CIDs. Moreover, IPFS
provides data redundancy, thus guaranteeing the availability of
data as it cannot be taken down by hackers.

B. Overall Architecture

Fig. [1] illustrates the proposed DAM architecture, which
consists of the following entities:

Zhttps://csrc.nist.gov/glossary/term/ecdsa
3https://www.nist.gov/publications/advanced-encryption-standard-aes
“https://ethereum.org/en/

Shttps://ipfs.tech/

o Content Owner: A party who owns the digital asset and
would like to sell it to customers.

o Customer: An entity who is interested in the digital asset.
They can get the asset by sending request to the DAM
smart contract.

o DAM Smart Contract: The smart contract regulating the
operation of the framework. It can receive requests from
customers, receive funds from other parties and decide
whether to grant access for any eligible customer.

o IPFS: A decentralized storage environment for storing
source files of digital assets. Customers can easily down-
load the files from IPFS if they are granted access.

In this framework, it is assumed that all participants possess
Ethereum addresses that could connect to the blockchain and
communicate with the DAM smart contract. Each DAM smart
contract accounts for only one particular digital asset. The
workflow of the proposed platform consists of the following
stages:

o Stage 1: The customer firstly sends a register request to
the smart contract associating to the asset. The register
request is actually a transaction calling to a function of
the contract with a predefined license fee.

o Stage 2: After the register request is received by the smart
contract, a new event is emitted to the content owner.
If the owner decides to grant access to the customer, he
extracts the customer’s public key and prepares the asset’s
source files for further stages.

o Stage 3: In this stage, the content owner uses provided
tools to encrypt the source file with a generated symmec-
tric key, calculate hash of the encrypted file and generate
a signed key, which can be used by only the customer
who successfully buys the asset to decrypt the file. This
process is presented in detail in Section [[I-C]

o Stage 4: The encrypted file from stage 3 is then uploaded
to IPFS. As a result, the content owner obtains the IPFS
link/URL for that file (derived from the IPFS ID).

o Stage 5: The content owner sends the signed key, IPFS
link and the encrypted file’s hash to the DAM smart con-
tract according to the customer’s address. At this point,
the IPFS link can be accessed only by the associated
customer, while the signed key and file hash cannot be
accessed by anyone.

o Stage 6 and 7: The customer receives the IPFS link and
uses it to download the encrypted file from IPFS.

o Stage 8: The customer calculates the hash of the en-
crypted file downloaded from IPFS. Then, he calls the
smart contract function Compare Hashes, passing the
calculated hash as an argument.

o Stage 9: Depending on the result of the Compare Hashes
function in the previous stage, there are two scenario. If
the two hashes match with each other, the smart contract
will send the signed key to the customer (9.1). Otherwise,
the contract is canceled and the funded license fee is sent
back to the customer (9.2).

o Stage 10 and 11: If 9.1 occurs, the smart contract

4. Upload Encrypted file

2. Events (new request)

1 Receive and extract 3
! customer's Public key 1
1+ from the tr ion !

5. Signed key, Hash

10.1. Pay license fee

-

Public key

» IPFS

)

i DAM Smart
Contract

and link to IPFS file - N
) » Compare Hashes '«
. ‘.

e

3. Generate secp256k1

PRI P

>» Sy ic key » Signed key

- — Encrypted file — Hash

7. Get Encrypted file

N

(With license fee) Customers

1. Register request

6. Get IPFS Link

8. Send Hash

‘.' Signed key
¢ Private

9.1. Get Signed key

Matched
9.2. Return license fee

11.1. Recover source file

{ Symmetric key 1
: (— Encrypted file |
' I
\

Fig. 1. The overall architecture of the proposed DAM Framework

finishes the transaction by sending license fee to the
content owner. Finally, the customer can use the signed
key combining with his own private key to decrypt the
encrypted file, thereby obtaining the source file.

In addition, customers can cancel their request at anytime
as long as they have not been granted access to the digital
asset (i.e., before the stage 5). In this case, only the customer
incurs a small gas fee on the transaction at stage 1. However,
customers still can cancel their request after stage 5 by
intentionally sending a wrong file hash to the smart contract
to compare in stage 8. In this case, both the content owner
and the customer lose a minor gas fee interacting with the
smart contract in previous stages. To prevent attackers from
draining the owner’s account, each customer address can only
fail at most once when comparing hashes. Otherwise, the smart
contract will ban the suspicious address.

While each digital asset is managed by one smart contract,
multiple customers could request for the asset at the same time.
To prevent single source of truth (SSOT), a new symmetric
key associated with a new IPFS link is generated for each
customer. Since we use IPFS instead of centralized storage
environments, storage capacity is almost unlimited and should
not be considered as a significant issue.

This process ensures that there are only two possible cir-
cumstances; either the customer receives the valid source file
and license fee is sent to the content owner, or the transaction
is canceled without any significant financial loss. Furthermore,
all transactions are submitted to the blockchain, therefore they
are immutable and transparent to all participants.

C. Key Generation and Encryption Unit

This is an important process to ensure the security of
the entire system. Inputs of this process include the source
file of the digital asset, and the public key of the customer
who requested the asset. Firstly, a 256-bit symmetric key is
generated randomly by the key generation unit. Then, the
following two sub-tasks are performed:

¢ Source File Encryption: The symmetric key is used to

encrypt the source file using AES-256 algorithm. The

TABLE I
MAIN FUNCTIONS OF THE DAM SMART CONTRACT.
Function Caller Gas Description
Update price Owner Yes Update new price for the asset

Register request | Customer | Yes Request to buy the asset

Cancel request Customer | Yes Stop buying the asset

Grant access Owner Yes Accept the request (Stage 5)

Get IPFS URL Customer | No Get IPFS url from the contract

Compare hash Customer | Yes Compare two hashes (Stage 8)

Get signed key Customer | No Get the key if hashes match

Withdraw fund All Yes Withdraw available tokens

Get price All No Get current price of the asset

encrypted file is then hashed to obtain the file hash for
later usage.

o Creating Signed Key: Public key of the customer is
extracted from his transaction. It is used to sign the sym-
metric key, thereby acquiring the signed key. Actually,
this is an asymmetric encryption process using ECDSA
(secp256k1) encryption.

As a result, the above process outputs the signed key
according to the customer’s public key, the encrypted file
and its hash. The file hash is used to compare with the hash
computed by the customer to ensure that the encrypted file is
not altered during transmission or in the storage environment.
Whenever the customer receives the signed key, he and only
he can decrypt it to obtain the original symmetric key by using
his private key.

D. Smart Contract and Marketplace Implementation

The DAM smart contract is written in Solidity and imple-
mented on Ethereum blockchain. Our source coddd for the
DAM smart contract is available on Github. Main functions
of the smart contract are shown in Table [l

Furthermore, we created a marketplace utilizing the DAM
smart contract to prove its feasibility in practice. This is
a complete DApp connecting to the blockchain, IPFS and
provides users with a user-friendly interface (illustrated partly

Shttps://github.com/tuanvu171/Digital- Asset-Management

in Fig. [2). We also publish the source code for our DAM
Marketplace on Githulﬂ

Explore Digital Assets

Al Products Metaverse Item Metaverse Avatar image Video Music

List your item to sell on the Marketplace

You must enter informatior

UPLOAD SOURCE FILE

Image

of the item that you want to list.

tomer OxbbO..85ch is

Picasso Image

tomer Oxbb9e...85¢9 is

Oxbb9c...85

Oxbb9e..85ch s

Customer Oxbboc..85cd is

CANCEL CREATE

Customer Oxbboc..85¢9 is

tomer Oxbboc..85cf is 1

Fig. 2. The DApp marketplace operating on top of our proposed framework.

III. PERFORMANCE AND SECURITY ANALYSIS
A. Security Analysis

In this section, we analyse a wide range of scenarios at-
tacking different components of the system, thus showing how
our framework can resist these attacks. The only assumption
that our system needs is that attackers cannot steal the private
key from customers, which is an obvious condition for all
blockchain-based systems.

1) Data Leakage: In general, an attacker could exploit the
following components of the DAM system to steal data.

o Attacking the storage environment: In DAM systems
using centralized databases, attackers can hack these
databases to steal all digital assets. On the other hand,
our framework uses IPFS, a decentralized file system, to
store source files of digital assets. Only those who have
the IPFS ID can download the corresponding files.

o Communication between users and storage environ-
ment: It is possible that hackers eavesdrop data when the
content owner uploads the file to IPFS, or when customers
download the file from IPFS (stage 4 and 7 in Fig. [I).
However, the file has been encrypted using a randomly
generated symmetric key, thus the attackers still cannot
access the original file.

o Communication between users and the smart con-
tract: Another scenario of data leakage is that attackers
eavesdrop both the IPFS URL and the signed key when
they are sent to the smart contract in stage 5, or when they
are downloaded by customers in stage 6 and 9. With the
IPFS URL, attackers can directly download the file from

7https://github.com/tuanvu171/DAM-Martketplace

IPFS. However, only the steal signed key is not enough
to decrypt the file. Instead, it needs the symmetric key,
which can be obtained by only the customer with his
private key.

Our framework is designed to withstand all scenarios lead-
ing to data leakage. Even when attackers could dominate the
system and steal all data during the transmission, they still
cannot obtain the source file of digital assets.

2) Data Alteration: As we use IPFS for data storage, it
is impossible to alter content storing in this decentralized
environment thanks to its mechanism [9]. However, attackers
can interfere in the transmission of data while it is uploaded or
downloaded by participants, thus altering the file intentionally.
In our framework, this issue is prevented by comparing hashes
as presented in stage 8 of the workflow. If the downloaded
file is altered, the hash calculated by the customer will not
match with the hash stored in the smart contract. As a result,
the transaction is canceled and license fee is paid back to the
customer. This process is completely reliable since it is carried
out by the smart contract instead of any third-party authority.
In other words, it offers atomic transaction, meaning that the
final payment will be either successful or canceled without
financial loss.

3) Participant Dishonesty: Our framework can resist partic-
ipant fraud without the intervention of third-party authorities.

o Dishonest Content Owner: In traditional platforms, the
content owner may not provide the digital asset’s license
or might send incorrect files after receiving license fee.
In our framework, license fee is only paid after the
smart contract confirms that the customer has received
the correct source file. In all other cases, transactions are
canceled.

o Dishonest Customer: It is possible that customers al-
ready received the correct file but they try to avoid
paying license fee by claiming that the file is invalid or
they cannot download it. In our system, customers can
only download the encrypted file before the payment is
settled. Without confirming receipt of the correct content,
customers gain no information related to the digital asset.

Thanks to the above incentive mechanisms, our framework
does not require trust assumptions among participants in the
network. If a user acts dishonestly, he will lose a certain gas
fee, while the system is finalized safely.

4) Smart Contract Attacks: It is necessary to take into
account attacks related to smart contract vulnerabilities [[10f].
In this paper, we use the tool Oyente published by Luu
et al. [11] to analyse possible financial vulnerabilities such
as Re-Entrancy Attack, Callstack Depth Attack, Transaction
Ordering Dependence (TOD) and Parity Multisig Bug.

Fig. [3] shows the security analyses on our DAM smart
contract. The results indicate that our smart contract does
not suffer from any security vulnerabilities, since all types
of attack are marked “False”. Therefore, it can be argued that
our framework is safe from all these types of smart contract-
related attacks.

italAssetContract
Results

VM Code Coverage:
Integer Underflow:
Integer Overflow:
Parity Multisig Bug 2:
Callstack Depth Attack Vulnerability:
Transaction-Ordering Dependence (TOD):
Timestamp Dependency:
Re—Entrancy Vulnerability

====== Analysis Completed =

:root:contract Di talAssetContract:
:symExec: =
:symExec:
:symExec:
:symExec:

:symExec:
:symExec:
:symExec:
:symExec:
ssymExec:
:symExec:

Fig. 3. Smart contract security analysis for different attack types.

5) Other Beneficial Features: Since our framework oper-
ates on top of the Ethereum blockchain, it inherits most of the
key features of blockchain technology as following:

o Eliminate Third-party-related Issues: In traditional
platforms, third-party authorities are often involved in
different components of the system such as distribution
channels, licensing brokers or centralized databases. If
they are hacked or they act maliciously, the entire system
will be completely dominated. In contrast, our framework
does not depend on third parties. Therefore, it eliminates
all issues related to intermediaries.

¢ Minimize Communication: In our platform, there is no
communication between participants. Instead, they mostly
interact with the DAM smart contract using the DApp.

o Lower Cost: No commission is required in our platform.
The only costs users must pay are gas fees for transactions
on the blockchain network. They will be presented in
detail in Section [I[-B1l

o Transparent Information: Another advantage of our
blockchain-based framework is that all information re-
lated to trading digital assets are public, transparent and
immutable since they are stored in the blockchain.

B. Performance Analysis

In this section, we provide analyses on the performance of
proposed framework. Firstly, we analyse gas consumption and
operation cost of the system in different scenarios. Then, we
estimate the speed and latency of the framework based on the
figures of blockchain and IPFS.

1) Gas Estimation: Table [[I| shows the gas consumption
of each contract function in the framework. Contract deploy-
ment only runs once when the smart contract is initialized.
Functions which are more complex (e.g., containing intensive
computation) would consume more gas. Other functions which
only read information from the blockchain and do not change
the blockchain state consume no gas. On the other hand,
gas fee (in ETH) is mainly determined by the supply and
demand among miners, while the price of ETH is decided by
the market. During the analysis on September 2022, 1 gas is
approximately 8 gwei (1 gwei = 10~2 ETH), while 1 ETH is
around $1,327 US.

Fig. [illustrates gas consumption of each participant in
different scenarios of a full operating cycle (i.e., from the time
the customer submit request until the access is granted suc-
cessfully or the contract is canceled). The costs are calculated
based on which function must be called during the process.

TABLE 11
GAS CONSUMPTION OF SMART CONTRACT FUNCTIONS.
Contract function Gas Used Ether USD
Contract Deployment 926655 0.00927 | 12.17
Register Request 59540 0.00048 0.63
Cancel Request 51836 0.00041 0.55
Grant Access 101779 0.00081 1.08
Compare Hashes (Failed) 55868 0.00045 0.6
Compare Hashes (Success) 78591 0.00063 0.84
Update Price 28794 0.00023 0.31
Withdraw Fund 29046 0.00023 0.31
TABLE III

GAS COMPARISON BETWEEN DIFFERENT FRAMEWORKS FOR EACH
SUCCESSFUL OPERATING CYCLE.

Framework for Cost per Successful Operating Cycle
Data Access Control | Total Gas Used Cost in USD
(8] 304,243 322
[7] 5,006,610 53.01
[6] 310,136 3.28
Proposed Framework 239,910 2.54

In the successful case, customers and the content owner must
pay about $1.46 US and $1.08 US respectively for the overall
transaction.

Participant
[/ content Owner
[customer
»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» 1.46$

140000 138131

120000

-11.22%
"""""""" “TT[1.18%

S D e 101779) |1} 0s

101779

100000

80000

asn utisop

60000

Gas Consumption

40000

20000

0

Successful Contract Cancelled
Granting Access [cancel) (C

Contract Cancelled
paring hashes failed)

Fig. 4. Operation cost in different scenarios.

In comparison with other similar frameworks proposed in
[6]]-[8]], the total cost of our platform is significantly lower for
each successful operating cycle (showing in Table [III).

2) Speed and Latency: Speed and latency of the framework
depends mostly on the following factors:

o Blockchain Platform: Since the system is implemented
on top of a blockchain, every action can only be done
after a new block is mined. Block time on Ethereum
blockchain is around 12 seconds. However, to ensure
transactions are not reverted, we often wait for 6 to 10

T T
—&— Owner (1 request)
—= Owner (2 requests)
—&— Owner (4 requests)
—— Owner (8 requests)
—@— Customers

2,000 |

1,500 -

1,000

Delay Time (seconds)

500

| |
0 50 100 150 200
Size of the Digital Asset (MB)

Fig. 5. Total delay time of trading digital assets for the content owner and
customers according to data size and number of concurrent requests.

block times, which is about 120 seconds. Therefore, the
delay causing by blockchain for each transaction can be
estimated: Tgc = 120s

« IPFS: Actions that require data upload/download will ex-
perience higher latency depending on data size. Accord-
ing to [[12]], latency and throughput of a write operation
with IPFS are around 42 ms and 1.2 MB/s respectively.
Whereas, the figures for read operations are about 800 ms
and 100 KB/s. As a result, the total time for uploading
and dowloading data with IPFS are: Ty = 0.042 + %
and T p = 0.8+ 0% (with s is the size of the source file
in MB).

o Encyprtion and Hashing Process: This process is to
encrypt the source file of digital assets with AES-256
algorithm, and hash the files with SHA-256. With CPU
frequency of 2.2 GHz, the average speed of the AES-
256 and SHA-256 algorithm are about 129 MB/s and
139 MB/s respectivelyﬂ Thus, delay causing by AES
encryption/decryption is: T'ags = 159. Whereas, the
figure for SHA-256 is: T'sya = 135-

All operations which only get data from the blockchain
will be finished immediately without having to wait for block
confirmation. Therefore, we only must calculate the total delay
time for the following two actions:

e The Content Owner: the owner encrypts and hashes
the source file, uploads it to IPFS and submits these
information to the smart contract: Towner = T Bc+71 AEs +
Tsya + Tru.

o Customers: they firstly request for the digital asset. Then
they download and calculate hash for the encrypted file,
call the compare hash function and then decrypt the file:
T'customer = 2.T'c + T'ags + T'sna + T'1p.

Fig. [3] illustrates the total latency that the content owner
and customers have to wait for each complete transaction
selling/buying digital assets. Customers must wait longer for
the asset since they have to call two functions of the smart

8https://cryptopp.com/benchmarks-amd64.html

contract, and download data from IPFS is significantly slower
than upload. Actually, the content owner can grant access to
multiple customers at the same block time. In that case, the
delay time only increases corresponding to encryption and
download time, while all requests are arranged into a single
block of the blockchain, thus Tpc remains unchanged.

IV. CONCLUSION

In this paper, we proposed a novel blockchain-based DAM
framework using smart contract, IPFS, and encryption mecha-
nisms to control digital asset accession in metaverse platforms.
Thanks to the DAM smart contract, decentralization and fair-
ness are ensured for all decisions, while the role of third-party
arbitrator is eliminated. Besides, IPFS storage and encryption
methods guarantee the integrity of data so that our design is
resist to data alteration and data leakage. A complete DApp
is also constructed as a marketplace for digital assets to prove
the feasibility of our framework in practice. In comparison
with existing platforms, experimental results show that our
framework consumes significantly less resources. Although
the prototype has proven the feasibility of the framework,
operating on a public blockchain makes it less efficient due to
the natural high latency of blockchain. Therefore, our future
work is to develop a consortium blockchain which is scalable
and optimized for the proposed DAM framework.

REFERENCES

[1] M. Barni and F. Bartolini, Watermarking Systems Engineering: Enabling
Digital Assets Security and Other Applications. CRC Press, 2004.

[2] U. W. Chohan, “Non-fungible tokens: Blockchains, scarcity, and value,”
Critical Blockchain Research Initiative (CBRI) Working Papers, 2021.

[3] W. Ku and C.-H. Chi, “Survey on the technological aspects of digital
rights management,” in Proc. International Conference on Information
Security (ISC), 2004, pp. 391-403.

[4] H. R. Hasan and K. Salah, “Proof of delivery of digital assets using
blockchain and smart contracts,” IEEE Access, vol. 6, pp. 65 439-65 448,
2018.

[51 A. Garba, A. D. Dwivedi, M. Kamal, G. Srivastava, M. Tariq, M. A.
Hasan, and Z. Chen, “A digital rights management system based on a
scalable blockchain,” Peer-to-Peer Networking and Applications, vol. 14,
no. 5, pp. 2665-2680, 2021.

[6] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, “Attribute-based
access control for smart cities: A smart-contract-driven framework,”
IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6372-6384, 2020.

[71 H. Guo, E. Meamari, and C.-C. Shen, “Multi-authority attribute-based
access control with smart contract,” in Proc. International Conference
on Blockchain Technology, 2019, pp. 6-11.

[8] J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control
using smart contract,” IEEE Access, vol. 6, pp. 12240-12251, 2018.

[9] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[10] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” in Proc. International Conference on Principles

of Security and Trust, 2017, pp. 164-186.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proc. ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 254-269.

[12] J. Shen, Y. Li, Y. Zhou, and X. Wang, “Understanding i/0 performance
of ipfs storage: a client’s perspective,” in Proc. IEEE/ACM 27th Inter-
national Symposium on Quality of Service (IWQoS), 2019, pp. 1-10.

(11]

https://cryptopp.com/benchmarks-amd64.html

	Introduction
	Background
	Related Works and Motivations

	Proposed DAM Framework
	Preliminary
	Blockchain and Smart Contract
	IPFS

	Overall Architecture
	Key Generation and Encryption Unit
	Smart Contract and Marketplace Implementation

	Performance and Security Analysis
	Security Analysis
	Data Leakage
	Data Alteration
	Participant Dishonesty
	Smart Contract Attacks
	Other Beneficial Features

	Performance Analysis
	Gas Estimation
	Speed and Latency

	Conclusion
	References

